III.Conference on

"Monitoring & Process Control of Anaerobic Digestion Plants"

March 30 – 31, 2017 Tagung Aqualitak (in German): Aquatische Makrophyten-Skologisch und Skonamisch optimierte Natzung (BMEL /FNR)

Arch 28, 2017 Workstep Record Biomep: Biomethane production in small and medium scale units (CU-H04120N)

Instrumentation and control of anaerobic digestion processes : A review and some research challenges

Jean-Philippe Steyer

Laboratoire de Biotechnologie de l'Environnement – INRA Narbonne - France

Content of the presentation

- Instrumentation in WW : Why ?
- Instrumentation in AD : Liquid Samples
- Instrumentation in AD : Solid Samples
- What is next ?

An example of the benefits of on-line instrumentation

Analysis of the start-up of dark fermentation from an off-line measurement of pH every day at 9:00 am

An example of the benefits of on-line instrumentation

The same with *on-line* measurements of pH every 3 minutes

There is also a lot of information when looking at the actuators !

Change in AD process dynamics impacts requirements on instrumentation and control

HRT : from hours...

- ♥ Real time and closed loop control
- Solution Monitoring of the overall process

...to days and weeks

- ♥ Human operator and open loop
- Precise characterisation of the inputs (codigestion)

Instrumentation for AD : How ?

An end-product is not really informative

Content of the presentation

- Instrumentation in WW : Why ?

- Instrumentation in AD : Liquid Samples

- Instrumentation in AD : Solid Samples
- What is next ?

An Anaerobic Digestion Process in Narbonne

Influent : Raw industrial distillery vinasses

<u>Reactor</u>: Circular column Up-flow fixed bed reactor

- 3.5 m height,
- 0.6 m diameter,
- 982 liters of total volume.

Media : Cloisonyl

- Specific surf. : 180 m²/m³
- Volume : 33.7 liters

Total effective volume : 948 liters

Schematic layout of the plant

TOC analyzer: Automated chemistry

 The gaseous CO₂ produced is analyzed by an IR sensor and is proportionnal to the TOC concentration

2) The "dissolved CO₂ free" sample is oxydized with a UV lamp

1) Chemicals are added to remove dissolved CO₂ from the sample

Titrimetric sensor: chemistry + basic maths

Measurements of total and partial alkalinities

Estimation of bicarbonate and VFA concentrations

(every 3 minutes if needed)

The titrimetric sensor

Combining titration and conductivity

0.15

C BioEnTech

0.18

http://bioentech.eu

Measurements using light

Energy conservation principle

Incident Energy = Reflected Energy + Absorbed Energy + Transmitted Energy $E_{I}(I)$ = $E_{R}(I)$ + $E_{A}(I)$ + $E_{T}(I)$

Measurements using light

An example of advanced mathematics using light : UV or infrared

Mid Infra-Red Spectra of Pure Samples

Mid Infra-Red Spectra of Complex Samples

Wave Number (cm⁻¹)

Calibration Principle

Calibration Results

Similar results on partial and total alkalinity

Wavelength in the UV region

UV spectrometer: light + advanced maths

On-Line Results

Influent flow rate (I/h)

Volatile Fatty Acids (g/l)

Total Organic Carbon (g/l)

Similar results on partial and total alkalinity

Optimal start-up of processes

Within 5 months, start-up of a fluidised bed reactor from 0 to 100 kg COD.m⁻³.d⁻¹ and 80% removal efficiency

Monitoring and control on the long term

VFA and setpoint (mg/L)

A control law can be badly tuned

and more than a week to go back to normality

Why so many on-line sensors ?

Practical evalutation of the respective benefits of each measuring technique

Which sensor has the largest potential for industrial use ? (*i.e.*, maximum of information for minimum of maintenance)

and

Technology

₫

45 No 4-5 pp 495-502 @ IWA Publishing 2002

Evaluation of a four year experience with a fully instrumented anaerobic digestion process

J.P. Steyer, J.C. Bouvier, T. Conte, P. Gras and P. Sousbie

Laboratoire de Biotechnologie de l'Environnement, INRA, Avenue des Etangs, 11100 Narbonne, France

Abstract For several years, a 1 m³ fixed bed anaerobic digestion process has been operated for the treatment of distillery vinasses. This reactor has been fully instrumented with the following variables available on-line: pH, temperature, liquid and gas flow rates, gas composition (i.e., CH₄, CO₂ and H₂), concentration of bicarbonate, chemical oxygen demand, total organic carbon, volatile fatty acids and partial and total alkalinity, these last four variables being measured twice by different techniques (i.e., using a TOC analyzer, a titrimetric sensor and an infrared spectrometer). The purpose of this paper is to compare the respective benefits of advanced instrumentation for the monitoring of wastewater treatment processes in general, and for anaerobic digestion in particular. It will also provide some statistical analysis of the time required to operate a fully instrumented wastewater treatment process. It is indeed well admitted in the literature that instrumentation is usually the main limitation step for using closed-loop control. However, it is our opinion that, in the near future, this situation will change. This point is discussed based on our four years practical experience.

Lessons learnt from 15 years of ICA in anaerobic digesters

J.P. Steyer*, O. Bernard**, D.J. Batstone*** and I. Angelidaki***

*Laboratoire de Biotechnologie de l'Environnement, LBE-INRA, Av. des Etangs, 11100 Narbonne, France (E-mail: steyer@ensam.inra.fr)

**INRIA-COMORE, 2004 Avenue des lucioles, BP93, 06902 Sophia-Antipolis, France (E-mail: obernard@sophia.inria.fr)

***Environment & Resources, DTU, Bygningstorvet Building 113, Lyngby 2800 DK, Denmark (E-mail: djb@er.dtu.dk; ria@er.dtu.dk)

Abstract Anaerobic digestion plants are highly efficient wastewater treatment processes with inherent energy production. Despite these advantages, many industries are still reluctant to use them because of their instability contronted with changes in operating conditions. There is therefore great potential for application of instrumentation, control and automation (ICA) in the field of anaerobic digestion. This paper will discuss the requirements (in terms of on-line sensors needed, modelling efforts and mathematical complexity) but also the advantages and drawbacks of different control strategies that have been applied to AD high rate processes over the last 15 years.

Keywords Anaerobic digestion; automation; control; diagnosis; instrumentation; modelling

Which sensor(s) for which measurement(s)?

	From classical measurements (pH, T, Qgas, %CO2, P)	TOC analyzer	Titrimetric sensor	UV spectrometer	MIR spectrometer
Partial Alkalinity			\checkmark		\checkmark
Total Alkalinity			\checkmark		\checkmark
Bicarbonate	\checkmark		\checkmark		\checkmark
Dissolved CO2	\checkmark				\checkmark
тос		\checkmark		\checkmark	\checkmark
Soluble COD				\checkmark	\checkmark
Total VFAs			\checkmark	\checkmark	\checkmark
Acetate					\checkmark
Others (<i>eg.,</i> N, P)			\checkmark	\checkmark	\checkmark

Towards smart sensors

Sensors should provide a confidence index to plant managers

Content of the presentation

- Who am I?
- Instrumentation in WW : Why ?
- Instrumentation in AD : Liquid Samples
- Instrumentation in AD : Solid Samples
- What is next ?

Biodegradability Aspects

- ✓ Characterization of the organic matter
- ✓ Link with contaminants (eg., pharmaceuticals, detergents,...)

Biodegradability Aspects

Use of infrared to predict OM biodegradability

and proof of concept

Flash BMP®

Use of infrared spectrometry to predict methane potential (BMP) from solid waste

Technological development

Available on the market

Flash BMP[®] model

Some included substrates: Municipal Solid Waste Agro-industrial Green waste Energy crops Manure Sludge

Going further with NIRS

Biodegradability vs. Bioaccessibility

Another way to characterize accessibility and complexity

3D fluorescence spectroscopy

Another way to characterize accessibility and complexity

Anaerobic digestion

Composting

Lab scale reactors to generate data for models calibration/validation

Anaerobic Digestion Compost

Cropped soil Incubation

Modeling of the digester performance

Modeling of the digestate fractions

Better characterization leads to better pretreatments

19864 UMR 1402 ECOSYS Exclusive (instrumentle et 4cx-concosingle des apri-drausstitmes, 78 850 Thioreval-Orignon, France

The added value for optimal valorization of organic residues

C, N, P, K, S and micropollutants fate: process modelling and reverse engineering

What is next ?

Instrumentation for tomorow

Microbial fuel cell type biosensor for specific volatile fatty acids using acclimated bacterial communities

Amandeep Kaur^a, Jung Rae Kim^{b,c}, Iain Michie^b, Richard M. Dinsdale^a, Alan J. Guwy^a, Giuliano C. Premier^{b,*}, Sustainable Environment Research Centre (SERC)

⁴ Faculty of Health, Sport and Science, University of Glamorgan, Pontypridd, Mid-Glamorgan CF37 1DL, UK

^b Faculty of Advanced Technology, University of Glamorgan, Pontypridd, Mid-Glamorgan CF37 1DL, UK

^c School of Chemical and Biomolecular Engineering, Pusan National University, Jangjeon-Dong, Geumjeong-gu, Busan 609-735, Korea

1 + 1 = 2 ... or less !

Model based optimisation

Lack of actuators ?

	Water Research sox (2015) 1–9			
ELSEVIER	Contents lists available at ScienceDirect Water Research journal homepage: www.elsevier.com/locate/watres	WATER RESEARCH		
Biological carbon dio Y. Bajón Fernández ª, K. Gr	xide utilisation in food waste anaerobic (een ª, K. Schuler ^b , A. Soares ª, P. Vale ^c , L. Alibardi	i digesters		
E. Cartmell Ap Confid University, Cranfield, Biedfordshire, 1 Scole Nationale Supervises de Chanse de Ben Secons Trent Water, 2 St John's Street, Coven Department of Industrial Engineering, Univer ELSEVIER journal homepag CO2 sequestration by methanogen		in activated sludge for methane		
	Production Nazlina Haiza Mohd Yasin ^a , Toshinari Maeda ^{a,t} ^a Department of Biological Functions Engineering, Graduate School of Life Science Situshysehn 808-0196, Japan ^a Research Center for Advanced Eco-fitting Technology, Kyushu institute of Urban ^c Key Laboratory of Urban Environment and Health, Institute of Urban Environm ^d Department of Chemical Engineering, Pennuglvania State University, University	Bioresource Technology 102 (2011) 6443-6448 Contents lists available at ScienceDirect Bioresource Technology ice and i		
		Enhanced methane production in a two-phase anaerobic digestion plant, after CO ₂ capture and addition to organic wastes C. Salomoni ^a , A. Caputo ^a , M. Bonoli ^a , O. Francioso ^b , M.T. Rodriguez-Estrada ^c , D. Palenzona ^d		

^bDipartimento di Scienze e Tecnologie Agroambientali, V.le Fanin 40, 40127 Bologna, Italy

⁶ Dipartimento di Scienze degli Alimenti, Vile Fanin 40, 40127 Bologna, Italy ⁶ Dipartimento di Biologia Evoluzionistica Sperimentale, Via Selmi 3, 40126 Bologna, Italy

Power to Gas : from H₂ to CH₄ (to store energy)

Power to BIOGas : H₂ to improve CH₄

- ✓ Improved hydrogenetrophic methanogenesis
- ✓ Lower inhibition of hydrolysis
- ✓ Limitation by gas transfer

AD as a flexible renewable energy production

Today: energy market is dominated by big central power plants

Future : production based on weather conditions (AD as a central role in flexibility)

Towards optimal and engineered microbial ressource management ?

Available online at www.sciencedirect.com ScienceDirect ELSEVIER Microbial management of anaerobic digestion: exploiting the microbiome-functionality nexus Marta Carballa, Leticia Regueiro and Juan M Lema	Bioresseree Technology 197 (2015) 208-216 Contents lists available at ScienceDirect Dioressource Technology journal homepage: www.elsevier.com/locate/biortech Key microbial communities steering the functioning of anaerobic digesters during hydraulic and organic overloading shocks Leticia Regueiro *, Juan M. Lema, Marta Carballa Department of Chemical Information, 15702 Sentingo de Composible, 15702 Sentingo de Composible, Spain
Appl Microbiol Biotechnol (2015) 99:189–199 DOI 10.1007/s00253-014-6046-3 BIOTECHNOLOGICAL PRODUCTS AND PROCESS ENGINEERING Inoculum selection is crucial to ensure operational stability in anaerobic digestion Jo De Vrieze • Sylvia Gildemyn • Ramiro Vilchez-Vargas • Ruy Jáuregui • Dietmar H. Pieper • Willy Verstraete • Nico Boon	ARTICLE Received 30 Jul 2014 Accepted 12 Jan 2015 Published 23 Feb 2015 Nutritional stress induces exchange of cell material and energetic coupling between bacterial species Saida Benomar ^{1,*} , David Ranava ^{1,*} , María Luz Cárdenas ¹ , Eric Trably ² , Yan Rafrafi ² , Adrien Ducret ³ , Jérôme Hamelin ² , Elisabeth Lojou ¹ , Jean-Philippe Steyer ² & Marie-Thérèse Giudici-Orticora ¹

For more information

Instrumentation and control of anaerobic digestion processes: a review and some research challenges

Julie Jimenez, Eric Latrille, Jérôme Harmand, Angel Robles, José Ferrer, Daniel Gaida, Christian Wolf, Francis Mairet, Olivier Bernard, et al.

Reviews in Environmental Science and Bio/Technology

ISSN 1569-1705

Rev Environ Sci Biotechnol DOI 10.1007/s11157-015-9382-6

> Reviews in Environmental Science and Bio/Technology

D Springer

Thank you very much for your attention

http://www.montpellier.inra.fr/narbonne jean-philippe.steyer@inra.fr

