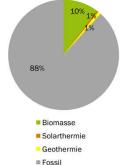


Systemlösungen Bioenergie im Wärmesektor im Kontext zukünftiger Entwicklungen

FKZ-Nr. 03KB113 (BioPlanW)

Matthias Jordan, Volker Lenz, Katja Oehmichen, Henryk Haufe, Markus Millinger, Nora Szarka, Stefan Majer, Daniela Thrän, Jan Schüngel, Rüdiger Schaldach


8. Statuskonferenz Leipzig, 18 Sept´2019

Zielstellung

Systematisches Abschätzen der Entwicklungsperspektiven für die Wärmeerzeugung aus Biomasse in Deutschland bis 2050

- Definition differenzierter **Teilmärkte** und Entwicklungsszenarien
- Status Quo und Entwicklungspotenzial der Technologiekonzepte im Zusammenspiel mit anderen erneuerbaren Energien
- Modellierung der Teilmärkte und die Etablierung von Technologien im Wettbewerb
- **Auswirkungen** auf Emissionen, Kosten, Ressourceneffizienz, Landnutzung und Klimanutzen
- Identifizierung von **Handlungsbedarf** und Integration in die anstehenden politischen Prozesse

Teilmärkte & Technologien

19 Teilmärkte:

Private Haushalte (43%)		GHD (17%)		Industrie (40%)
Тур	Sanierung	Nutzung	Alter	Temperatur
EZFH (57%)	unsaniert	halbtags	< 1983	< 200°C
MFH (36%)	saniert	ganztags	> 1983	200°C - 500°C
GMH (7%)	san.+	Gewerbe		> 500°C

Technologiekonzepte (pro Teilmarkt):

- Mindestens eine fossile Referenztechnologie
- Repräsentative Biomassetechnologien
- Biomasse Hybrid-Systeme
- Mindestens eine alternative EE-Technologie

Bsp.: 14,9 kW - Ein-/Zweifamilienhäuser

- Gas Brennwerttherme
- Gas Brennwerttherme + Scheitholzofen
- Gas Brennwerttherme + ST
- Gas Brennstoffzelle + ST
- Wärmepumpe + PV
- Wärmepumpe + PV + Scheitholzofen
- Pellet Kessel
- Pellet Brenner + ST
- Scheitholzvergaser + ST
- Torrifizierte Pellet WKK + Wärmepumpe + PV

BioPlanW - Systemlösungen Bioenergie im Wärmesektor

Modellierung

Input

Technologie Daten

- Laufende Kosten
- Investitionskosten
- THG Emissionen
- Wirkungsgrad
- Lebenszeit
- Technologie Mix
- etc.

Wärmemarkt Modell

Minimierung der Gesamtkosten bis 2050 mittels mathematischer

Optimierung

Output

Jährliche Entwicklung der

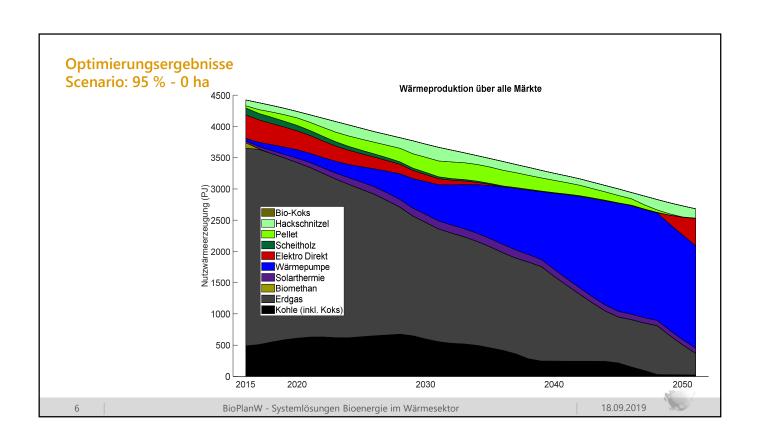
- Technologieverteilung
- Biomasse Nutzungspfade
- **Emissions-Anteile**
- Kosten

In 4 Szenarien auf den verschiedenen Märkten

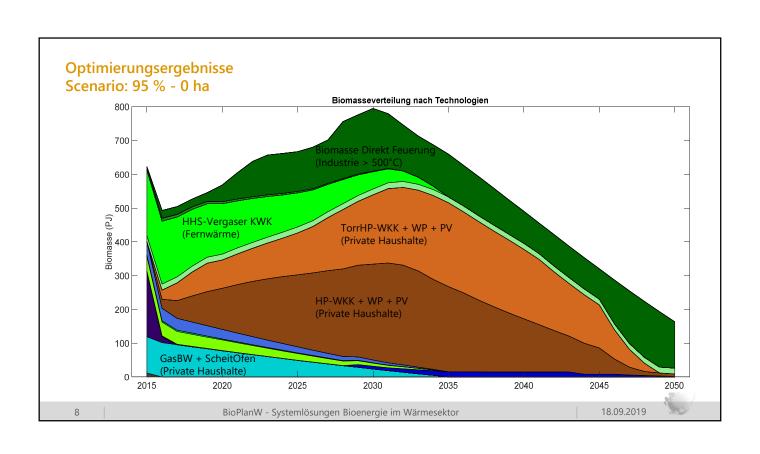
- Politische Ziele (80% / 95% THG Reduktion)
- Biomasse ist limitiert (Anbau/ kein Anbau)
- Wärmebedarfsentwicklung auf den verschiedenen Teilmärkten (Daten Öko-Institut)

Umgang mit Unsicherheiten/ Sensitivitäten

BioPlanW - Systemlösungen Bioenergie im Wärmesektor


18.09.2019


Szenarien


	Biomassepotential		
	Reststoffe + 2 Mio ha Anbau	Reststoffe + 0 ha Anbau	
80 %	✓	✓	
95 %	✓	✓	

- Stromsektor wird im Modell nicht abgebildet!
- → Definition Szenarienrahmen (Studie "Klimaschutzszenario 2050", Öko-Institut)
- Relevante Parameter für Szenarienrahmen:
 - Strompreisentwicklung
 - Gas-, Kohlepreisentwicklung,
 - CO₂-Zertifikate Preisentwicklung,
 - Strommixemissionsfaktorentwicklung

5 BioPlanW - Systemlösungen Bioenergie im Wärmesektor 18.09.2019

Schlussfolgerungen der Szenarienanalyse

80%:

Holzige Reststoffe: Einsatz in Hybrid (Torr-) Pellet WKK Anlagen in

den privaten Haushalten

Anbaubiomasse (Miscanthus): Einsatz in Industrieanwendungen verschiedener

Termperaturniveaus

95%:

Holzige Reststoffe:

→ Mittelfristig: Einsatz in Hybrid (Torr-) Pellet KWK Anlagen in

den privaten Haushalten

→ Langfristig: Einsatz in Hochtemperatur Industrieanwendungen

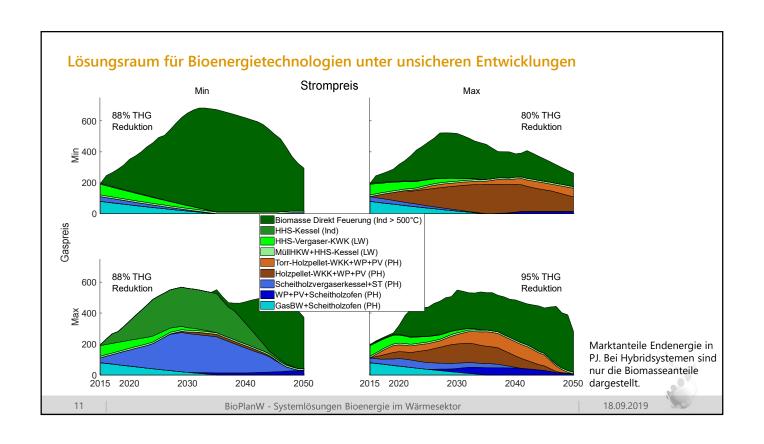
Anbaubiomasse (Miscanthus): Einsatz in Hochtemperatur Industrieanwendungen

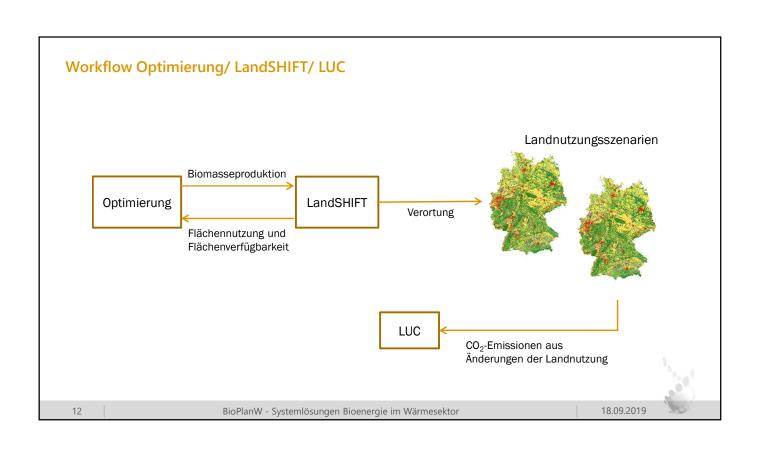
BioPlanW - Systemlösungen Bioenergie im Wärmesektor

18.09.2019

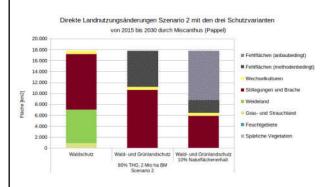
Sensitivitätsanalyse

Methode:

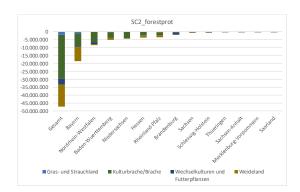

- Globale Sensitivitätsanalyse von Sobol'
- Unsicherheit in 32 Parametern untersucht
- 34.000 Modellläufe (0,4% unlösbar)


Ergebnisse:

- Strom- und Gaspreis: Beeinflusst die Wettbewerbsfähigkeit der Technologien deutlich
- Klimaziel: Ändert die Wettbewerbsfähigkeit der Technologien ab 2040; ein höheres Klimaziel begünstigt HHS Technologien
- Biomasse Potential/ Sektorzuweisung: verstärkt/ schwächt die Marktanteile, beeinflusst aber nicht die Wahl der Technologie
- Hoher Zinssatz: Verstärkt die Marktanteile zugunsten von HHS Technologien, beeinflusst aber nicht die Wahl der Technologie


Parameter	Min in %	Max in %	
Strompreis		•	
Gaspreis		and and another design	
Kohlepreis	Variation entsprechend recherchierter Studien (12-24 Studien / Parameter)		
CO ₂ -Zertifikatepreis	(12-24 Stu	gien / Parameter)	
Strommixemissionsfaktor			
Steigerung Biomassepreise[%/a]	1	5	
Zinssatz [%]	1	7	
Investition HHS Tech.	-10	+10	
Investition Pellet Tech.	-10	+10	
Investition Scheitholz Tech.	-10	+10	
Investition Elektro Direkt Tech.	-10	+10	
Investition Wärmepumpen Tech.	-10	+10	
Investition Solarthermie	-10	+10	
Investition Gas Tech.	-10	+10	
Lebenszeit HHS Tech.	-5	+5	
Lebenszeit Pellet Tech.	-5	+5	
Lebenszeit Scheitholz Tech.	-5	+5	
Lebenszeit Elektro Direkt Tech.	-5	+5	
Lebenszeit Wärmepumpen Tech.	-5	+5	
Lebenszeit Solarthermie	-5	+5	
Lebenszeit Gas Tech.	-5	+5	
Emissionsfaktor Biomasse Rohstoffe	-30	+30	
Emissionsfaktor Fossile Rohstoffe	-10	+10	
Wirkungsgrad HHS Tech.	-5	+10	
Wirkungsgrad Pellet Tech.	-5	+10	
Wirkungsgrad Pellet Tech.	-5	+10	
Wirkungsgrad Biogas Tech.	-5	+10	
Ertrag Energiepflanzen Verbrennung	-33	+33	
Ertrag Energiepflanzen Vergärung	-20	+20	
THG Reduktionsziel	80	95	
Biomasse Potential	Ressourcendatenbank	webapp.dbfz.de (Min/Max	
Biomasse Wärmesektorzuweisung	Akt. Nutz. → 30	Akt. Nutz. → 70	

BioPlanW - Systemlösungen Bioenergie im Wärmesektor



Ergebnisse aus LandSHIFT & CO₂-Emissionen durch LUC

- Szenarien mit nur Waldschutz haben genügend Anbaupotentiale (insb. durch Grünlandfläche)
- Verstärkter Flächenschutz und Naturflächenerhalt führen zu Defizit bei Anbauflächen
- Konkurrenz bei Wechselkulturen prim. zu Futterpflanzen und Futtermais

- In den drei LUC Bereichen kommt es durch den Umbruch zu Miscanthus/Pappel insgesamt zu **Kohlenstoffanreicherungen**
- Die Ergebnisse zeigen deutlich, dass der Indikator THG-Einsparung für die Bewertung der LUC nicht ausreichend ist → Landnutzungsformen wie Kulturbrache/Brache sind z.T. wichtige Flächen für den Erhalt der **Biodiversität**.

18.09.2019

Handlungsempfehlungen

BIOPLANW

MODELLKONZEPTE
FÜR EINE KLIMANEUTRALE
WARMEVERSORGUNG

HANDLUNGSEMPFEHLUNGEN

A ERWARTLINGEN
B BANKENSEDNÜLUNGEN
C I EHBANNESS
D FREISCHLING ERTWICKLING LIND DEMONSTRATION
E MARKTLUNSETZING

14
BIOPLANW

A ERWARTLINGEN
B BANKENSEDNÜLUNGEN
C EMBANNESS
D FREISCHLING ERTWICKLING LIND DEMONSTRATION
E MARKTLUNSETZING

BIOPLANW

A ERWARTLINGEN
B BANKENSEDNÜLUNGEN
C EMBANNESS
D FREISCHLING ERTWICKLING LIND DEMONSTRATION
E MARKTLUNSETZING

BIOPLANW

A ERWARTLINGEN
B BANKENSEDNÜLUNG
B MARKTLUNSETZING

B MARKTLUNSETZ

BioPlanW - Systemlösungen Bioenergie im Wärmesektor

Handlungsempfehlungen

1. Einsatz von Wärme-Kraft-Kopplungs-Bioenergie-Technologien

(Smarte Strom-Wärme-Sektorkopplung)

- > Stromknappheit muss sich beim Endkunden in angepasst hohen Preisen widerspiegeln
- Reduktion der Komplexität für die Akteure

2. Einsatz fester Biomasse in industrieller (Hochtemperatur-) Prozesswärme

- Definierter THG Minderungsfahrplan
- Industrie verpflichten zu dekarbonisieren
- ➤ Hochtemperatur-Einsatz der Biomasse anreizen

3. Bereitstellung von Festbrennstoffen

- Verstärkte Nutzung von Reststoffen und minderwertigen Nebenprodukten
- > Etablierung von Miscanthus diskutieren

15

BioPlanW - Systemlösungen Bioenergie im Wärmesektor

18 09 2019

Vielen Dank für Ihre Aufmerksamkeit!

Publikationen

- Nora Szarka, Volker Lenz, Daniela Thrän. The crucial role of biomass-based heat in a climate-friendly Germany

 A scenario analysis. Energy. https://doi.org/10.1016/j.energy.2019.115859
- Volker Lenz, Matthias Jordan. Technical and economic data of renewable heat supply systems for different heat sub-sectors. https://data.mendeley.com/datasets/v2c93n28rj
 doi:10.17632/v2c93n28rj.1
- Daniela Thrän, Volker Lenz, Diana Pfeiffer (Hrsg.)(2019): Focus on: Systemlösungen im Wärmesektor. 47 Modellkonzepte für eine klimaneutrale Wärme. In: Fokusheft Energetische Biomassenutzung, Leipzig – ISSN 2192-1156 (im Druck)
- Matthias Jordan, Volker Lenz, Markus Millinger, Katja Oehmichen, Daniela Thrän. Competitive Biomass Key Applications to Fulfill Climate Targets in the German Heat Sector: Findings from Optimization Modelling. EUBCE Conference Proceedings. http://www.etaflorence.it/proceedings/?detail=16385 doi:10.5071/27thEUBCE2019-5BV.3.10
- Matthias Jordan, Volker Lenz, Markus Millinger, Katja Oehmichen, Daniela Thrän. Future competitive bioenergy technologies in the German heat sector: Findings from an economic optimization approach. *Preprint submitted to Energy*. https://arxiv.org/abs/1908.10065
- Matthias Jordan, Markus Millinger, Daniela Thrän. Robust bioenergy technologies for the German heat transition: A novel approach combining optimization modeling with Sobol' sensitivity analysis. *Planned submission to Energy Conversion and Management in 09/2019*.

BioPlanW - Systemlösungen Bioenergie im Wärmesektor

18.09.2019

Kontakt

Helmholtz-Zentrum für Umweltforschung GmbH - UFZ

Ansprechpartnerln: Matthias Jordan

Arbeitsbereich: Department Bioenergie

AG: Erneuerbare Energien

E-Mail: <u>matthias.jordan@ufz.de</u>

Telefonnr.: +49 341 2434 590

Webseite: https://www.ufz.de/index.php?de=43046

Anschrift: Permoserstraße 15

04318 Leipzig Germany

17

BioPlanW - Systemlösungen Bioenergie im Wärmesektor